Μπορείτε να πάρετε οποιαδήποτε άσκηση ή πρόβλημα από το υλικό τού 1^{ου} εξαμήνου και να το λύσετε με μετασχηματισμό Laplace: το αποτέλεσμα πρέπει να βγει ίδιο!

ΕΠΙΠΡΟΣΘΕΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΕΛΙΚΗ ΑΠΑΝΤΗΣΗ

P 14.8-1 Using Laplace transforms, find the response $i_L(t)$ for t > 0 for the circuit of Figure P 14.8-1.

Figure P 14.8-1

 $i_L(t) = \begin{cases} 2 \text{ mA} & t < 0 \\ 3 - 5e^{-400t} \text{ mA} & t > 0 \end{cases}$

P 14.8-2 Using Laplace transforms, find the response $i_L(t)$ for t > 0 for the circuit of Figure P 14.8-2.

Figure P 14.8-2

$$i_L(t) = 5 - 2e^{-\frac{4000}{15}t}$$
 mA, $t > 0$

P 14.8-3 Using Laplace transforms, find the response $v_c(t)$ for t > 0 for the circuit of Figure P 14.8-3.

Figure P 14.8-3

$$V_c(t) = 12 - 4e^{-1000t}$$
 V, $t > 0$

P 14.8-4 Using Laplace transforms, find the response $v_c(t)$ for t > 0 for the circuit of Figure P 14.8-4.

Figure P 14.8-4

$$v_a(t) = 4 + 4e^{-1500t}$$
 V, $t > 0$

P 14.8-5 Using Laplace transforms, find the response v(t) for t>0 for the circuit of Figure P 14.8-5 when $v_s=6e^{-3t}\,u(t)$ V. Answer: $v=\frac{44}{3}e^{-2t}+\frac{1}{3}e^{-5t}-9e^{-3t}$ V

Figure P 14.8-5

 $v_{c}(t) = 44/3 e^{-2t} - 9e^{-3t} + (1/3)e^{-5t} V$

P 14.8-7 The motor circuit for driving the snorkel shown in Figure P 14.8-7a is shown in Figure P 14.8-7b. Find the motor current $I_2(s)$ when the initial conditions are $i_1(0^-) = 2$ A and $i_2(0^-) = 3$ A. Determine $i_2(t)$ and sketch it for 10 seconds. Does the motor current smoothly drive the snorkel?

Figure P 14.8-7 Motor drive circuit for snorkel device.

 $i_2(t) = 0.64e^{-0.26t} + 2.36e^{-1.54t}$ A for t > 0

ΠΙΟ ΠΡΟΧΩΡΗΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ

P 14.9-1 Consider the circuit of Figure P 14.9-1, where the combination of R_2 and C_2 represents the input of an oscilloscope. The combination of R_1 and C_1 is added to the probe of the oscilloscope to shape the response $v_0(t)$ so that it will equal $v_1(t)$ as closely as possible. Find the necessary relationship for the resistors and capacitors so that $v_0 = av_1$ where a is a constant.

Hint: Find the transfer function $V_0(s)/V_1(s)$. Choose R_1 and C_1 so that the transfer function does not depend on s.

$$R_1C_1 = R_2C_2$$

P 14.9-2 Consider the circuit shown in Figure P 14.9-2. Show that by proper choice of L, the input impedance $Z = V_1(s)/I_1(s)$ can be made independent of s. What value of L satisfies this condition? What is the value of Z when it is independent of s?

Figure P 14.9-2

$$L = R^2 C$$
 then $Z = R$

P 14.9-3 A bridged-T circuit is often used as a filter and i shown in Figure P 14.9-3. Show that the transfer function of the circuit is

$$\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{1 + (2R_1 + R_2)Cs + R_1R_2C^2s^2}{1 + 2R_1Cs + R_1R_2C^2s^2}$$

